Enantiocomplementary Synthesis of Functionalized Cycloalkenol Building Blocks Using Lipase

Seiichi Takano,* Takahiro Yamane, Michiyasu Takahashi, and Kunio Ogasawara

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

(Received 29 May 1992)

Abstract: Racemic 2-carbethoxy-2-cyclopenten-1-ol $[(\pm)-3a]$ and racemic 2-carbethoxy-2-cyclohexen-1-ol $[(\pm)-3b]$ afforded the corresponding (R)-acetates [(R)-4a and (R)-4b] leaving the corresponding (S)-alcohols [(S)-3a and (S)-3b] unchanged upon treatment with vinyl acetate in *tert*-butyl methyl ether in the presence of lipase PS, respectively, while the racemic acetates $[(\pm)-4a$ and $(\pm)-4b]$, derived from racemic precursors, $(\pm)-3a$ and $(\pm)-3b$, on suspension with lipase in a phosphate buffer solution afforded the corresponding (R)-alcohols [(R)-3a and (R)-3b] leaving the corresponding (S)-acetates [(S)-4a and (S)-4b] unchanged, respectively.

Owing to their chirality at allylic carbon center and functionality of ester group on the olefinic bond in the latent symmetric structure,¹ chiral unsaturated carbinols having the structural unit represented by 1 have a considerable synthetic potentiality as versatile chiral building blocks (Scheme 1). We report here an enanticomplementary synthesis of two cyclic examples having this particular functional system employing lipase-mediated kinetic resolution.

The required substrates were prepared readily by following the reported method.² Thus, 2-carbethoxy-2-cyclopenten-1-ol $[(\pm)-3a]$ was prepared from succinaldehyde and triethyl phosphonoacetate in aqueous potassium carbonate. Quite similarly, 2-carbethoxy-2-cyclohexen-1-ol $[(\pm)-3b]$ was obtained from aqueous glutaraldehyde under the same conditions. Both compounds were treated with acetic anhydride in the presence of pyridine to give the corresponding racemic acetates $[(\pm)-4a$ and $(\pm)-4b]$, respectively (Scheme 2).

The cyclopentenol $[(\pm)-3a]$ was first treated with two equivalents of vinyl acetate in the presence of each of six lipases in each of three organic solvents at room temperature for 3 days.^{1,3} Among lipases and the solvents used, a combination of lipase PS and *tert*-butyl methyl ether brought about an excellent enantiospecific esterification as shown in Table 1a. For a preparative purpose lipase PS [10 mg/mmol of (\pm)-3a] was used in

S. TAKANO et al.

tert-butyl methyl ether [5~10 ml/mmol of (±)-3a] at 28~30 °C which gave rise to the (*R*)-acetate⁴ [(*R*)-4a], $[\alpha]_D^{29}$ +2.6 (c 1.03, CHCl₃), in an excellent yield accompanied by the unchanged (S)-alcohol⁴ [(S)-3a], $[\alpha]_D^{31}$ -34.5 (c 1.10, CHCl₃), in 48% yield, both in 100% ee⁵ after 4 days.

On the other hand, the reaction of the cyclohexenol $[(\pm)-3b]$ did not proceed in a clear-cut diastereoselective manner and failed to give both of the acetate and the alcohol in optically pure forms in a single operation in *tert*-butyl methyl ether. However, the (*R*)-acetate^{6,7} [(*R*)-4b], $[\alpha]_D^{29}$ +132.1 (*c* 1.09, CHCl₃) (99% ee), and the (*S*)-alcohol^{6,7} [(*S*)-3b], $[\alpha]_D^{31}$ -52.9 (*c* 1.60, CHCl₃) (95% ee), having high optical purity could be obtained in satisfactory yields in a single operation carrying out the reaction in vinyl acetate (Table 1b).

Chemical deacetylation of (R)-4a was found to be unexpectedly difficult. On conventional base or acid catalyzed alcoholysis (R)-4a gave a mixture of a minor amount of the alcohol (3a) and a major amount of an alkoxy olefin both in partially racemized forms the latter of which presumably was generated by solvolytic

Scheme 3

Table 1a: Lipase mediated acylation of racemic 2-carbethoxy-2-cyclopenten-1-ol [(±)-3a]

			<u>(R)-4a</u>		<u>(S)-3a</u>		
Entry	lipase ^{a)}	solvent	time (day)	yield (%)	e.e. (%) ^{d)}	yield (%)	e.e. (%) ^{d)}
1	PS ^{b)}	CH ₂ Cl ₂	3	41.4	100	53.6	75.7
2	PS ^{b)}	benzene	3	49.5	95.8	45.2	100
3	PS ^{b)}	tert-BuOMe	3	53.6	86.7	44.7	100
4	PSc)	tert-BuOMe	4	49.9	100	48.2	100
5	OF ^{b)}	tert-BuOMe	3	10.8	77.7	85.7	9.9
6	AY ^{b)}	tert-BuOMe	3	4.5	98.5	90.7	11.3
7	AK ^{b)}	tert-BuOMe	3	51.5	95.9	44.3	100
8	MY ^{b)}	tert-BuOMe	3	3.8	88.3	88.7	6.2
9	PPLp)	tert-BuOMe	3	46.7	99.7	49.2	99.0

a) PS (*Pseudomonas sp.*, Amano); OF (*Candida cylindracea*, Meito); AY (*Candida rugosa*, Amano); AK (*Pseudomonas sp.*, Amamo); MY (*Candida cylindracea*, Meito); PPL (*Porcine Pancreas*, Wako): b) 100 mg/mmol of substrate: c) 10 mg/mmol of substrate: d) Determined by hplc using a chiral column, see, Ref. 5.

			<u>(R)-4b</u>		<u>(S)-3b</u>		
Entry	lipase	solvent	time (day)	yield (%)	e.e. (%)	yield (%)	e.e. (%)
1	PS ^{a)}	tert-BuOMe	11	21.9	100	64.8	35.4
2	PS ^{b)}	tert-BuOMe	2	48.0	90.8	46.0	94.7
3	PSb)	vinyl acetate	7	40.0	98.8	53.2	94.6

Table 1b: Lipase mediated acylation of racemic 2-carbethoxy-2-cyclohexen-1-ol [(±)-3b]

a) 10 mg/mmol of substrate: b) 100 mg/mmol of substrate: c) Determined by hplc using a chiral column, see, Ref. 7.

addition-elimination sequence. Although the optically pure (*R*)-**3a** could eventually be obtained in a satisfactory yield by careful hydrolysis of (*R*)-**4a** with diluted aqueous potassium carbonate, it could be obtained much more cleanly and in a much simpler way using lipase in a phosphate buffer-acetone solution.⁸ Lipase PS was again superior to other lipases and hydrolyzed the (*R*)-acetate [(*R*)-**4a**] into the (*R*)-alcohol [(*R*)-**3a**], $[\alpha]_D^{31}$ +34.4 (*c* 1.04, CHCl₃), in 92% yield without causing any racemization in a phosphate buffer-acetone solution [9:1 v/v, 5 ml/mmol of (*R*)-**4a**] after 12 h at room temperature. Similarly, the homologous (*R*)-**4b** afforded the (*R*)-alcohol [(*R*)-**3b**], $[\alpha]_D^{27}$ +57.9 (*c* 0.99, CHCl₃), in 92.5% yield without causing racemization under the same conditions though it took much longer reaction time (~100 h) (Scheme 3).

We next examined the lipase mediated hydrolysis of the racemic acetates $[(\pm)-4a$ and b] in a phosphate buffer-acetone solution (9:1 v/v). Lipase PS again showed an excellent selectivity in which the (*R*)-alcohols [(R)-3a and b] were generated selectively remaining the (S)-acetates [(S)-4a and b] unchanged. Thus, $(\pm)-4a$ in a solution of 0.1 M phosphate buffer and acetone [9:1 v/v, 5 ml/mmol of $(\pm)-4$] suspending lipase PS

Scheme 4

Table 2a: Lipase mediated hydrolysis of racemic 3-acetoxy-2-carbethoxycyclopentene [(±)-4a]

			<u>(R)</u> -3a		<u>(R)-4a</u>	
Entry	lipase	time (day)	yield (%)	e.e. (%) ^{d)}	yield (%)	e.e. (%) ^{d)}
1	PS ^{a)}	0.4	46.8	100	46.2	83.3
2	PS ^{b)}	0.5	38.8	100	49.9	79.2
3	PS ^{b)}	1	42.4	100	46.1	93.4
4	PSc)	1	43.6	99	44.8	100
5	PPLc)	1	28.8	74.9	18.6	73.4
6	PLE ^{c)}	0.4	27.2	93.3	60.6	41.3

a) 200 mg/mmol of substrate: b) 20 mg/mmol of substrate: c) 100 mg/mmol of substrate: d) Determined by hplc using a chiral column, see Ref. 5.

			(R)-3b		(S)- 4b		
entry	lipase	time (day)	yield (%)	e.e. (%) ^{c)}	yield (%)	e.e. (%) ^{c)}	
1	PS ^{a)}	0.5	22.9	100	71.0	32.4	
2	PS ^{b)}	1	30.1	100	68.1	48.6	
3	PS ^{a)}	2	40.8	100	54.0	78.8	
4	PSa)	3	42.6	100	52.0	91.1	
5	PLE ^{b)}	0.3	26.0	60.3	49.3	36.7	
6	PPL ^{b)}	10	10.5	~1	77.7	~0	

Table 2b: Lipase mediated hydrolysis of racemic 1-acetoxy-2-carbethoxy-2-cyclohexen-1-ol [(±)-4b]

a) 200 mg/mmol of substrate: b) 100 mg/mmol of substrate: c) Determined by hplc using a chiral column, see Ref. 7.

afforded both (R)-3a, $[\alpha]_D{}^{30}$ +34.2 (c 0.85, CHCl₃), and (S)-4a, $[\alpha]_D{}^{29}$ -2.6 (c 1.08, CHCl₃), in excellent yields and in optically pure states after 24 h at ambient temperature (Scheme 4; Table 2a). The same treatment of (±)-4b gave the optically pure (R)-3b, $[\alpha]_D{}^{28}$ +57.6 (c 0.59, CHCl₃) (100% ee), and the optically enriched (S)-4b, $[\alpha]_D{}^{30}$ -125.7 (c 1.24, CHCl₃) (91% ee), in excellent yields after 3 days at ambient temperature (Scheme 4; Table 2b).

In conclusion it is in particular noteworthy that the enantiomeric alcohols (**3a** and **b**) and the acetates (**4a** and **b**) can be obtained in optically pure or highly optically enriched forms by the lipase-mediated acylation and deacylation approaches shown which may be utilized complementarily depending on the chirality of target molecules. The present synthesis, therefore, may be termed enantiocomplementary.

References and Notes

- 1. Some examples intending to utilize the functionality of an allylic system having latent symmetry, see: Takano, S.; Inomata, K.; Takahashi, M.; Ogasawara, K. *Synlett* **1991**, 636 and references cited therein.
- Graff, M.; AlDilaimi, A.; Seguineau, P.; Rambaud, M.; Villieras, J. Tetrahedron Lett. 1986, 27, 1577; Villieras, J.; Rambaud, M.; Graff, M. Synth. Commun. 1986, 16, 149; Amri, H.; Rambaud, M.; Villieras, J. Tetrahedron 1990, 46, 3535.
- 3. cf. Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114.
- 4. Absolute configuration has been determined unambiguously by conversion into the known vitamin D₃ intermediate, see: Takano, S.; Yamane, T.; Takahashi, M.; Ogasawara, K. Synlett **1992**, 410.
- Optical purities were determined by hplc using a column packed with CHIRALCEL OD for both 3a and 4b (10% v/v i-PrOH-hexane).
- 6. Absolute configuration has not been determined rigorously yet. However, the observed enzymatic and chromatographic behaviors correspond well to those of the five-membered analogue. Furthermore, the prediction by the empirical rule based on ¹H-nmr (500 MHz) spectroscopy of the MTPA esters (*R* and *S*-) supported its stereochemistry as shown: cf. Takano, S.; Takahashi, M.; Yanase, M.; Sekiguchi, Y.; Iwabuchi, Y.; Ogasawara, K. Chemistry Lett. 1988, 1827 and Kusumi, T.; Otani, I.; Inouye, Y.; Kakisawa, H. Tetrahedron Lett. 1988, 29, 4731.
- 7. Optical purity was determined by hplc using a chiral column: CHIRALCEL OD (1% v/v *i*-PrOH-hexane) for **4b** and CHIRALCEL OB (1% v/v *i*-PrOH-hexane) for **3b**.
- 8. cf. Itoh, T.; Ohta, T. Chemistry Lett. 1991, 217.